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# As knowledge increases about human judgment processes, it is natural to
suppose that it will be possible to use this knowledge in order to improve
human judgment in situations where biases of various sorts have been shown
to occur. Despite the reasonableness of this expectation, judgmental de-
biasing has proven extraordinarily difficult in most cases. This paper sug-
gests that the reason for this failure is that debiasing must be in terms of
the procedures that are actually used in the act of judging, procedures
about which very little is kmown. Two experiments are presented that —
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. 1llustrate how such procedural debiasing can be used to debias a Bayesian
inference task. In the first experiment, a training procedure is used that
corrects a common error in the direction of the adjustment process that
subjects use when integrating later evidence with earlier partial judgments.
In the second procedure a focusing technique is used to improve the relative
weighting of samples in the overall judgment. Each of the procedures accom-
plishes its particular end, and taken together the two procedures allow
naive subjects to produce judgments that are essentially Bayesian. These
results are discussed in terms of a theoretical model of the judgment process
in which four basic stages are repeated cyclically: (a) initial scanning
of the stimulus information; (b) selection of items for processing in order
of importance; (c) extraction of scale values on the given dimension of
judgment; and (d) adjustment of & composite value that summarizes already-
processed components.
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Procedural Debiasing

Lola L Lopes
University of Wisconsin--Madison

As increasingly more is known about humsn judgment processes, it becomes ~3
reasonable to expect that this knowledge can be used to help people make better
judgments. This is particularly true in situations where failures of judgment
seem to be orderly manifestations of the processing mechanisms used by the judge
and not merely the random errors that might be attributed to inattention, insuffi- ot
cent knowvledge, faulty memory and similar nonsystematic factors. Unfortunately,
however, it has been easier to imagine such improvement than to produce it
(Fischhoff, 1982). '

Probably the first attempts at debiasing human judgments were aimed at
reducing the tendency of naive subjects in Bayesian inference tasks to produce
judgments that are “conservative" relative to the Bayesisn norm (Edwards, 1968).
In discussing thc'u early debiasing efforts, it is useful to rely on a classifica-
tion scheme devised by l':lschhoft (1982) in which debiasing procedures are cate-
gorized according to whether they lay the blame for the bias at "the doorstep of
the judge, the task, or some mismatch between the two" (p. 424). 4

Allegations that a task is faulty generally center on the possible failure
of the experimenter to mum in subjects sufficient understanding of the task
and sufficient motivation for proper performance. In the case of Bayesian
inference, Phillips and Edwards (1966) used specialized payoff schemes and feed-
back in order both to encourage subjects to try harder and to help them better
understand the task. Generally speaking, these methods had some effect in reducing
congervatism, but they were not sble to eliminate it.

A second task fault that was investigated involved a potential bjas in the
response scale. The argument ran that "correct" performance in Bayesian tasks
often requires the production of extreme responses, particularly when the judgments
must be given on a probability scale. If subjects are hesitant to make such
extreme judgments, conservatism can result. Phillips and Edwards (1966) tested
this hypothesis by comparing judgments on probability scales with judgments on
"odds" and "log odds" scales which require less extreme responding. They found
that use of response scales such as these reduced conservatism only slightly
relative to the more conventional probability scale.
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‘xl A more recent attempt at debiasing falls in Fischhoff's (1982) category
*’ | of attributing the bias to a mismatch between the task and the judge. Eils,

_ - Seaver, and Edwards (1977) based their procedure on the observation that the

Ef: judgments of naive subjects in Bayesian tasks are often more like averages

:lff (or estimates of population proportion) than like inferences, (Beach, Wise, &
Barclay, 1970; Marks & Clarksom, 1972, 1973; Shanteau, 1970, 1972). This being
80, Eils et al. hypothesized that subjects might be better at judging the mean
log likelihood ratio for a set of samples than at judging the more standard
cumulative log likelihood ratio. They also noted that the averaging resporse
. would reduce problems of "respcnse bias" if there were any operating.

::é.’: The hypothesis was tested by using two groups of subjects, one of which

: rated their average certainty for the target hypotheses and the other of which
“ rated their cumulative certainty. Responses from both groups were them converted

to log posterior odds form and regression analysis was performed for each subject
: comparing inferred log posterior odds to veridical log posterior odds. The
results supported the hypothesis: 1log odds inferred from average certainty judg-
’ ments were definitely closer to veridical than odds inferred from cumulative
‘\ certainty judgments.

“' The present research represents an attempt at debiasing that falls in

:“' Fischhoff's remaining category, that of attributing error to faulty judges.
~: Like the work of Eils et al. (1977), the research begins with the observation
~ that untutored subjects in Bayesian tasks tend to produce data that are more
! like averages than like i.nformcu.‘ But unlike the approach of Eils et al.,

no attempt is made to "engineer" the task to be better suited to human proclivi-
o ties. Instead, debiasing involves (a) analyzing the procedures that untutored

subjects use when they produce averages, (b) waming subjects about the specific
procedures that are inappropriate, and (c) providing subjects with appropriate
:‘.::'_: procedures that can be used in place of the inappropriate procedures.

Averaging and Adjustment in Bayesian Inference

; Bayesian inference tasks are usually instantiated in terms of the "bookbags

o and poker chips" paradigm in which subjects consider two well-specified hypo-
v theses (i.e., bookbags) usually involving populations of binary events (i.e.,
.:j;: red and blue poker chips). Typically the subject is shown two or more samples,
::;f often sequentially, and is asked after each sample to rate the strength of his
o
]

AN AT S T R T T T I e o N S




or her belief about which population generated the samples.

According to Bayes' theorem, the nommative response for such situations
is found by multiplying the prior odds ratio for the two hypotheses by the like-
1ihood ratio of the sample data given the two hypotheses. This yields the
posterior odds ratio:

(m1p) _ p(p|ED) _ p(u1) -
p'l'iz{'n"f Bpanxm )

Altematively, one can write Bayes' theorem to give the probability of a parti-
cular hypothesis: '

. D[ H1) -p(H1)
p(H1|D) p(D[HD) -p(HL) + p(D[H2) -p (H2) @

Note that in these equationa, the relationship between current data and previous
data is multiplicative. ' ]

How do naive humans perform wten they are asked to provide inferences in
Bayesian tasks? As has already been mentioned, human inferences differ from
Bayesian inferences in two important ways: (a) the individual judgments are
typically conservative relative to the Bayesian norm, and (b) the pattern of
judgments is suggestive more of averaging or estimation than of inference (Beach,
Wise, & Barclay, 1970; Marks & Clarkson, 1972, 1973; Shanteau, 1970, 1972).
Shanteau (1970) hypothesized that people'’s judgrents in such tasks could be
modeled by an algebraic rule in which the response, R, at any serial position,
n, is given by a weighted average of the scale values, -8-1’ of the previous and
current sample events:

n
R = Zws &)

In this equation the v, are weights that sum to unity and the temm Y% signifies
the weight and scale value of a neutral initial impression. It should be noted
that averaging is necessarily conservative relative to inference because averages
always lie within the range of the component stimulus values whereas inferences
are often more extreme than any of their component values.




Shanteau's model is successful in accounting for the quantitative features
of the data, but it does not suggest either why or how averaging occurs.
In previous research (Lopes, 1981; Lopes & Johnson, 1982; Lopes & Odem, 1980) }
I have suggested that averaging may occur because subjects integrate the ‘
stimulus information serially via an "anchoring and adjustment” process (Tversky |
& Kahneman, 1974). In this process subjects are hypothesized to integrate "new"
information into "old" composite judgments by adjusting the old value as necessary
to make the new composite lie somewhere between the old composite and the value
of the new information. Althcugh this process is qualitatively equivaleant to
averaging, it does not presuppose that subjects ever "compute” an average in any
algebraic —— or even any conscious -- sense of the term. Instead, averaging is
simply the natural consequence of the adjustment procedure.

One prediction of the adjustment model is that subjects in the Bayesian
task will occasionally make adjustments that are strictly in the wrong direction.
Consider two semples, both of which support the same hypothesis but to different
degrees. If a subject is first showm the weaker sample, we suppose that some
weak ptelinﬁuty judgment will be made in favor of the supported hypothesis.
Vhen the subjact is later shown the stronger sample, adjustment will be made in
the direction of increased support for the hypothesis. This is entirely appro-
priate qualitatively. But if the samples are reversed so that the weaker s@le
follows the stronger, qualitatively inappropriate adjustaemt ought to result.
That is, the preliminary judgment ought to produce a relatively strong result.
wﬁm the weaker sample is later integrated into the judgment, adjustment should
be in the neutral direction since the value of the weaker sample is more neutral
than the preliminary judgment. Such adjustment is obviously inappropriate since
movement in the neutral direction is de facto movement toward the alternative or

: non-supported hypothesis.
- Previous research (Lopes, 1981) has clearly supported the prediction that
e subjects will adjust in the normatively incorrect direction when a weaker

s 4 sample favoring some particular hypothesis follows a stronger sample favoring

:—': the same hypothesis. The present research is aimed at finding out whetter these

"directional errors" can be eliminated by training that warms subjects of the

AR occurrence of the errors and also teaches subjects an altemative procedure that
is directionally correct.

Two experiments are presented. The first experiment focuses on improving

. "'1 Ql’r
A :
- R R =

subjects' adjustment procedures qualitatively in specific cases where adjustment <
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errors are lmowm to occur. The second experiment extends the training to
include instruction in a selectional procedure that is hypothesized to improve -
subjects' quantitative performance.

Experiment 1
Method

Experimental task. Subjects in both conditions were asked to put them-
selves in the place of a machinist whose job is to make decisions concerning the

maintenance of milling machines using samples of parts produced by the machines.
The judgment concerms whether or not a critical spring has broken inside the
machine. Subjects were told that normal machines hsve a rejection rate of about
12 parts per 1000 parts produced (H12/1000), whereas machines with broken springs
have a rejection rate of sbout 20 parts per 1000 (H20/1000). Thus, in abstract
terms, the subjects were required to decide between alternate Bermoulli processes,
one with p = .012 and the other with p = .02, with p being the probability of a
rejected pert. .

Stimulus design. The stimulus design was a 9 x 9, first-sample x second-
sample, factorial design in which the levels of both factors comprised the same
‘samples of parts. These were 12, 13, 14, 15, 16, 17, 18, 19, and 20 rejects per
1000 parts, respectively. :

Procedure. Subjects were run individually in sessions that took atout
40 minutes for control subjects and 50 minutes for trained subjects. At the
beginning of the session subjects were brought into a sound proof booth and
seated in front of a computer controlled video terminal. Control subjects were
then given general instructions about the nature of the task and stown how to
read the stimulus display. A sample of a stimulus display is shown in Figure 1.
At the top of the display is a box showing a sample with 13 rejects out of
1000 parts. Under this is a notation showing that this is the first of two
samples. At the bottom of the display “, a response scale anchored at the left
by the words "machine normal" and at the right by the words "machine faulty".

Figure 1 about here

The procedure for each trial was identical, Subjects read the information
for the first sample and then rated their degree of belief as to whether the
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machine was milling nommally or not. They made their ratings using a joystick
to move the rating arrow (shown in the middle of the scale in Figure 1) along
the response scale. When they finished their initial rating, subjects pushed

a button on the response box. This caused the initial rating to be transmitted
to the computer and also caused the first sample to be replacec by a second
sample of parts from the gsame machine. Subjects revised their initial rating

to account for the new sample and pushed the response button to transmit their
final response to the computer. Then they initiated the next trial by retumning
the reasponse arrow to the middle of the scale and pushing the button again.

The instructions for trained subjects vere essentially identical to those
for control subjects through the explanation of the stimulus display and the
rating response, except that trained subjects were told at the outset that they
would be taught a procedure for avoiding a common judgment error. The actual
training took place during eh& early practice trials. The first prictice trial
was a wveak-strong pair (17/19) that was chosen especially to elicit correct
responses from all subjects. For this trial, all subjects initially rated a
sample of 17 rejects to favor the fgulty machine moderately and then adjusted
this rating to favor the faulty machine even more strongly after presentation
of the sample of 19 rejects. |

The second trial was a strong-weak pair (13/14) chosen to elicit the Airec-
tional error. On this trial subjects were shown the first sample (13 rejects)
and allowed to msake their initial ucin( and to transmit their response. - Then
they were shown the uca;d sample (14 rejects) and were allowed to make their
adjustaent, but they were stopped before they transmitted the response. Most of
the subjects (20 of 31) made their adjustment in the wrong direction and were
read the :lnltrdctiona reproduced below. The others were read similar instructions,
but with wording changed to accommodate the fact that they had, in fact, responded
correctly on this trial.

Before you transmit your response, let me talk with you about
your response. You shouldn't feel bad, but remember I told
you that many people make an error in this task. Well, you
Just made it. Let me explain it to you. Most people, if they
are given a sample of 14 rejected parts as a first sample, say
that the machine is more likely to be functioning normally than
not. But wvhen they are given a sample of 14 rejected parts
after they have just been given a sample of 13 rejected parts,
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they tend to adjust their judgment toward the right, that is,
toward the machine being broken. Now if you think about it,
this is an error of adjustment since a sample of 14 rejects
favors the normal machine and therefore provides additional
evidence that the machin;‘is normal. Thus, théa;hjustment
should be toward the left, that is, toward the machine func-
tioning normally. Do you understand this so far?

After subjects indicated that they understood what the error was, the experi--
menter taught them a simple procedure for avoiding the error. Basically, this
was to separate each judgment operaticn into two steps: (a) the labeling of each
sample as either favoring the "normal” hypothesis or the "faulty" hypothesis
and (b) the adjustment of the current respcnse in the direction given by the
label. (It 1is convenient to think of the initial rating produced by the subject
after pregentation of the first sample as involving an adjustment made to an
earlier and implicit "neutral’ response produced by the subject at the onset of
each new trial.) Thus, when both first and second samples favored the same
hypothesis, both the initial rating and the final adjustment would be made in
the same direction relative to the neutral point, and only when the second
sample favored a hypothesis different from the first would the final adjustment
be opposite in direction to the initial rating.

After teaching subjects the judgment procedure, the experimenter asked them
to respond to several trials on their own, while verbalizing what they were
doing. This allowed the experimenter to check that they were explicitly separa-
ting the labeling and the adjustment steps and that they were adjusting at each
step in the direction given by the labeling operation. Among these training
trials were two for which these samples were identical.. When the first such
trial (17/17) appeared, the experimenter waited to see whether the subject would
adjust for the second sample _and then stopped the trial for further
instruction. Subjects who had failed to adjust (8 out of 31) were told, "Now
this kind of trial also causes errors. Let me explain, Your first sample was
17 rejects and you judged the machine as likely to be broken. Then you got
new evidence of 17 rejects also favoring the machine being broken, but you didn't
adjust, Actually you should have adjusted since that is additional evidence
in favor of the machine being broken. Do you see what I mean?" Subjects who
had adjusted correctly were read similar instructions, but modified to accord

with theilr correct response.
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It is important to note that the training procedure involved on'y
qualitative features of the judgment process. At no time were subjects given
instruction concerning how they ought to evaluate the sample information
quantitatively. Although such training might be helpful generally, the aim
of the present research was to determine the degree to which judgment can be
improved by strictly procedural means, that is, by giving subjects better
procedures for operating on information rather than by giving them better or
more accurate information.

Altogether there were 13 trials for practice and training for the trained
subjects. Control subjects received the same 13 trials for practice, but with
no training. Then both groups of subjects received two replications of the
stimulus design, bringing the total number of trials to 175 per subject. Experi-
mental trials within each replication were ordered randomly but with the restric-
tion that no sample appear either as first-sample or second-sample on two
consecutive trials.

Subjects. The subjects for control and trained groups were, respectively,
30 and 31 student volunteers from the University of Wisconsin-Madison. Approxi-
mately half were males and half females. They served for credit to be applied
to their course grades in introductcry psychology.

Results and Discussion

Two questions are of interest in this expezfime!lt. The first is whether
training concerning directional adjustment errors can prevent or at least reduce
their prevalence in the inference task. The second is whether, given that such
prevention or reduction of errors is possible, this leads to improvement in the
accuracy of the final judgments,

Data bearing on the first question are given in Table 1. Five subjects
have been dropped from the control condition and five from the trained condition
since these subjects appeared to base their final judgments entirely on the
second sample. Note, however, that the basic results of the experiment would
have been the same whether these subjects were retained or not.

Subjects were unanimous in treating samples of 12 to 15 rejects per 1000
parts as favoring the machine being normal and samples of 17 to 20 rejects
as favoring the machine being broken, but they were highly variable in how
they treated samples of 16 rejects. (Actually, such samples favor slightly the
machine being broken.) Some subjects "ended to treat these as neutral, others
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treated them as favoring one or the other hypothesis, and still others treated
then inconsistently across trials. For reasons of this variability, pairs
involving 16 rejects are not considered explicitly in the formal analysis,
However, an interesting problem involving these samples that occurred for some
subjects is deascribed in the General Discussion.

"Table 1 about here

Taken together, there were 20 pairs in which adjustment errors might have
been expected. These comprised the eight pairs along the diagonal of the
stimulus design in which the two samples are identical (i.e., 12/12, 13/13,
14/14, 15/15, 17/17, 18/18, 19/19, 20/20) and the twelve non-diagonal pairs
in which a (stronger) sample favoring a particular hypothesis is followed by
a weaker sample favoring the same hypothesis (i.e., 12/13, 12/14, 12/15, 13/14,
13/15, 14/15, 20/19, 20/18, 20/17, 19/18, 19/17, 18/17). These pairs are
indicated in the table as "diagonal" pairs and "strong-weak" pairs, respectively.
The table also gives results for the set of "weak-strong" pairs. These are
exactly the same set as the strong-weak pairs except that the stronger sample
in each pair is preceded by the weaker. Since for these pairs the intuitive
direction of adjustment is normatively correct, they provide an estimste of the
rate of adjustment errors that occur for reasons other than the incompatibility
of the normative response with the intuitive direction of adjustment (i.e.,
misreading the stimulus). '

Looking first at strong-weak pairs and weak-strong pairs, it is clear that
the training procedure has been effective in reducing the number of directional
adjustment errors, where "error" refers to an explicit adjustment in the
nonnormative direction. (Including as errors occasions on which no adjustment
was made would have produced essentislly the ssme results.) For the control
group there 18 an average of 13.4 errors per subject (out of 24 maximum) for
strong-weak pairs compared to an average of only .40 errors per subject for
weak-strong pairs; F(1,24) = 60.43, p < .05). For the trained subjects, however,
the average 1is 3.11 errors for strong-weak pairs compared to .42 errors for
vweak-strong pairs; F(1,25) = 8.33, p < .05. Comparing across groups, the trained
subjects have significantly fewer errors them control subjects for strong-weak
pairs [F(1,49) = 113.46, p < .05] but not for weak-strong pairs (F < 1].

The final row of the table gives the results for diagonal pairs. Adjustment
errors have been scored for these pairs only if there was room for the adjustment
to occur (i.e., the response was not already at the end of the scale) and if there
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was either no adjustment at all or adjustment in the wrong direction. (Errors
of the latter type were very rare.) Mean error: (out of a maximum of 16)

were 3.24 for the control group and 1.08 for the trained group. Both these
error rates are significantly different from zero [F(1,24) = 26.18 and F(1,25)
= 8.99, respectively, p < .05], and the rate for the control group is signi-

_ ficantly higher than that for the trained group [F(1,49) = 10.29, p < .05].

In general, it appears that the training procedure was able to reduce

'F (although not completely to eliminate) directionsl adjustment errors, parti-
.;Ejl ' cularly for strong-weak pairs. The question remains, however, as to whether
b this reduction was accompanied by improved accuracy of judgment (i.e., reduced

conservatism). Figure 2 gives the final judgment data for the control group
pooled over both subjects and replications. For purposes of comparison,
Figure 3 gives theoretical values for an optimal Bayesian judge. In Figure
2, - the data for pairs where errors are likely (i.e., strong-weak pairs
and diagonal pairs) are shown by filled symbols and the .datn for remaining
pairs are shown by open symbols. The row parameter in both cases is number
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of rejects in the second sample.

Figures 2 and 3 about here

It is clear graphically that there is a large difference between the data

pattern produced by the control subjects and the theoretical pattern: The
theoretical data have a "barrel"” shape whereas the control data look more like
a set of parallel lines. This appearance is borne out by analysis of variance:
Although the data for control subjects have asignificant interaction [F(64,1536)
= 2,66, p < .05), it accounts for only .72 of the total systematic sum of squares.
By way of contrast, analysis of variance on the theoretical values indicates
that the interaction should account for 4.66% of the systematic sum of squarea.

The data for the trained subjects are in Figure 4. Overall, the figure
presents the same appearance as that for the control group, although the inter-
action term [F(64,1600) = 4,98, p < .05) is somewhat larger, accounting for
1.2% of the systematic sum of squares.

Figure 4 about here

Although Figure 4 gives all the data, the points that are critical for
the training procedure are just those that are filled. Comparison of these
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* eritical pairs for control and trained subjects shows that subjects who had
received training were, indeed, more accurate in their judgments for these
points. Figured on group means, the root-mean-squared-deviations between
obtained and theoretical were, for the control group, .0723 for strong-weak
pairs and .0227 for diagonal pairs, relative to the 0-1 response scale,

For the trained subjects, however, these values were .0187 and .0047,
respectively.

The data for the critical pairs are about what might be expected given
the nature of the training, but an unexpected finding is that improved perfor-
mance on strong-weak pairs generalized to the corresponding wesk-strong pairs:
Although the training procedure did not in any way attempt to modify subjects’
procedures for judging weak-strong pairs, trained subjects did sbout as well
on these (RMSD = ,0220) as they did on the strong-weak pairs. In the same
way, the control subjects did sbout as poorly on weak-strong psirs, RMSD =
.0626, as they did on the strong-weak pairs.

This generalization of improved accuracy from stromg-weak to weak-strong
pairs is of interest since it suggests that the trainiang instructionc may have
been effective not only in helping subjects avoid the specific adjustment error,
but also in helping them understand the task better. Although the present data
do not speak to the issue directly, previous data showing that the judgments of
naive subjects are more like estimates of populstion proportion than they are
like inferences (Beach, Wise, & Barclay, 1970; Marks & Clarksom, 1972, 1973;
Shanteau, 1970, 1972) suggests that subjects may have difficulty understanding
the difference between inference and estimation. By focusing attention on the
directional errors in inference that occur for strong-weak pairs, one may also,
by serendipity, focus attention on the special characteristics that distinguish
inference from estimation and hence, improve subjects’ understanding of the task.

But if trained subjects do understand the inference process better than
control subjects, why do their data show the ssme tendency toward parallelism?

Put another way, why are their inferences so conservative for those hetero-
geneous pairs (shown in the upper left and lower right quadrants of the figures)
in vhich the two samples favor different hypotheses? The answer to this may
1lie in the weights that subjects give to the various samples.

Consider a situation that is like the current one except that subjects
are actually instructed to estimate the proportion of rejected parts for s
particular machine. If the two samples are of equal size and equal reliability,
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the subject ought to give them equal weight and simply average the values.
Furthermore, no matter what value a particular sample has (i.e., whether the
first sample is 12, 14, 16 or any other number of rejects), the value itself
should not affect the weight of the sample in the overall judgment. A subject
who followed such a “constant weighting" strategy would produce a parallel
pattern of dats such as is found in Figures 2 and 4.

The Bayesian ta:k, however, requires that subjects adopt a "differential
weighting" strategy: Samples that are extreme (i.e., 12 or 20) are more
diagnostic than samples that are nearer neutral (i.e., 15 or 17), and should
be weighted more heavily in the inference process. But this is wht,
apparently, subjects do not naturally do 1n the Bayesian task (i.e., Beach,
Wise, & Barclay, 1970; Shanteau, 1970) or in a great many other tasks as
well (c.f. Anderson, 1974). Thus, it may be that subjects in the trained
condition do understand the Bayesian task better than their comntrol condition
analogs, at least in the sense that they are really integrating evidence and
not merely integrating sample sizes, but they may not understand that the more
extreme estimates are more diagnostic and hence should be accorded greater
weight. For homogeneous pairs in which both samples favor the same hypothesis,
such a misunderstanding would not be likely to impair accuracy much since
subjects' responses are forced to converge (just as they ought to) by the end
of the respouse scale. For heterogeneous pairs, however, the misunderstanding
1is more serious since thni:e is nothing to prevent subjects from making overly
large adjustments given only weskly diagnostic information, thus caueing the
poor correspondence between theoretical and obtained for these particular pairs.

Experiment 2 investigates whether this hypothesized problem with intuitive
weighting of information can be alleviated by a modification of the training
procedure used in Experiment 1.

Experiment 2

Method
Task and design. The task for Experiment 2 was exactly like the task for
Experiment 1 except that the two samples within each pair were presented
simultanecusly. The stimulus design was the same as had been used in Experiment 1.
Procedure. The procedure for the control subjects was essentially the same
as for Experiment 1 except for thc' differences occasioned by the simultaneous




stimulus display. However, the instructions for the trained subjects were

more detsiled and were applied to every kind of stimulus pair. When trained
subjects were first brought into the experiment they were told that they would

)

be taught a simple procedure that would allow them to make good judgments in

a particular kind of inference task, Then they were told abcut the task situa-

tion (i.e., the machine maintenance problem) and were instructed how to read

the stimulus display and use the ruﬁonse device, The actual training began

only after it was clear that the subjects understood the stimulus situation.
Subjects were taught a four step procedure to be applied to every stimulus

2%
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pair. The steps were introduced to subjects and explained as the subjects
worked through a series 6f practice trials. During this training period subjects
were asked to work through the steps out loud so that the experimenter could
check on their understanding and use of the procedure. The steps were as
follows: |

(a) Judge for each sample separately whether it supports the "normal"
hypothesis or the "faulty" hypothesis or whether it is neutral.

(b) Decide which of the two samples supports its own hypothesis more
strongly.

(¢) Make an initial rating as to vhether the mehine is faulty or not
based only on the stromger of the two pieces of evidence. If both
pileces are equally strong, either can be used as the basis for the
initial rating.

(d) Adjust the initial rating in order to take into account the second,
(weaker) pilece of evidence.

(1) If the second piece of evidence favors the same hypothesis as
the first, then "consider the portion of tte response scale
between [the] original rsting and the [appropriate] end of the
scale and move the arrow into this region according to how
strong the remaining evidence is."”

(11) If the second piece of evidence favors the opposite hypothesis,
then "consider the portion of the rating scale between [the]
original rating and the neutral position and adjust back into
this region according to how strongly the ssmple [supports the
other hypothesis]."

Note that although the procedure sounds complicated when summarized, it was
much simpler to follow in the context of actual stimulus pairs. No subject
appeared to have any great difficulty in following the proceduvre during training
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or in executing the task afterward.

Altogether there were 20 trials for practice and trajning for the trained
subjects. Control subjects received the same 20 practice trials, but with no
training. Then both groups of subjects received two replications of the basic
stimulus design, bringing the number of trials to 182 per subject. Experi-
mental trials within replication were ordered randomly but with the restriction
that no given sample appear on two consecutive trials. The full experiment
required about 40 minutes for comtrol subjects and about 55 minutes for trained
subjects.

Subjects. The subjects were 56 student volunteers from the University of
Wisconsin--Madison, split evenly between the control and the trained conditioms.
About half were males and half females. Most subjects served for pay, although
a few gserved for credit to be applied to their ccurse grade in introdvctory

Ppsychology.

Results and Discussion

The data for the control subjects are given in Figure 5 pooled over both
subjects and replications. Samples designated "first” appeared above the other
sample in the simultaneous display.

Note that the pattern of judgments is essentially identical to that of the
control subjects in Experiment 1. This visual similarity is confirmed by an
analysis of variance showing that the intcract;loﬁ. although significant, F(64,1728)
= 1.81, p < .05, accounts for only .42% of the lyltmt:l.c sum of squares.
Calculation of the root-mean-squared-deviations between theoretical and obtained
reveals an overall RMSD of .1043 for the entire data array, which breaks down to
RMSD's of .0968 for homogeneous cells, .1156 for heterogeneous cells, and .0322
for diagonal cells.

Figure 5 about here

The data for the trained subjects are in Figure 7, Clearly, the training
procedure has been effective in making the subjects' responses more optimal.
In terms of analysis of variance, the interaction [F(64,1728) = 33.89, p < .05]
now accounts for 4.55% of the systematic sum of squeres compared to the optimal
value of 4.66%. The overall RMSD between theoretical and obtained is .0480,
which breaks down to RMSD's of .0321 for homogeneous cells, .0567 for hetero-
geneous cells, and .0077 for diagonal cells. Although deviations for heterogeneous
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cells are still somewhat larger than those for homcgeneous cells, they are much
improved compared to those for the control group. It is also interesting to
note that the largest deviations between theoretical and obtained now tend to
involve overly radical responses. This is particularly evident for homogeneous
pairs in which one sample vas 12 rejects and the other was near neutral (15 or
16 rejects). In part these errors reflect the fact that subjects tended to
treat the judgment task symmetrically, vhen samples of 12 rejects actually gave
cousiderably less support to the hypothesis H12/1000 than samples of 20 rejects
gave tc the hypothesis H20/1000.

- an o0 @& @ o W w @ @ W™ w - e

Figure 6 about here

General Discussion

Before proceeding to a discussion of the implicetions of the present
research, it is important to point out exactly what the training procedures
did and did not "teach” the subjects. Obviously there would be little interast
in showing that subjects can leamm to use 'hyn' theorem if they are given
explicit instructiom on how to do so. Debiasing becomes of interest only if
it is possible to modify subjects’' predilections by procedures that are closer
to natural modes of thought than is the rote #pplicqtion of an appropriate
normative rule. In other words, the gcal is to educate the intuitiom, not
merely to improve the performance. ‘

In Experiment 1, the training procedure tsught the subjects only ome
thing that previously they did not know, namely, that adjustments of the initial
rating made after presentation of the second sample should always be in the
direction of the hypothesis favored by the second sample. In Experiment 2, the
explicit training included the same information about adjustment direction
but also taught subjects to process the two samples in order of their apparent
relative strength. At no time in either training procedure did the experimenter
teach the subjects anything about which samples favored which hypotltesis or
how strongly they did so, nor did she suggest how diagnostic or "weighty" the
samples should be considered to be. These matters of sample evaluation were
always left entirely to the subjects.

In 1ight of the limited training to which subjects were expored, the
smount of debiasing that occurred is impressive. In Experiment 1, explicit
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training wvas directed only at the 12 strong-weak pairs and the 8 diagonal pairs.
It would have been entirely within reason for subjects’' responses to the other
61 pairs to be unaffected by the training since, so far as was indicated, there
vas nothing wrong with their intuitions concerning such pairs. As it turned out,
however, improvement generalized from the strong-weak pairs to analogous weak-
strong pairs. Obviously, there is no way to know for sure why this improvement
occurred, but a possibility that has appeal is that tle training focused
subjects' attention on the inferential nature of the task and prevented the
apparently common tendency to fall into judging tte sample proportion rather
then the relative likelihood of the two hypotheses. Thus, trained subjects

aay have benefitted not only from prior instruction concerning how to preveant

a particular error, but also by being forced, so to speak, to better understand
what it was they were judging. »

There was, however, for some trained subjects an interesting failure of
generalization for corta:ln'paira in vhich a diagnostic sample (i.e., a sample
favoring one or the other hypothesis) was followed by a sample that the subject
judged to be neutral or nondiagnostic (1.e., a sample of 16 rejects). As was
noted earlier, there was considerable variability among subjects in how they
evaluated samples of 16 rejects. Nevertheless, 9 control subjects and 16 trained
cubjects seemed reliably to produce initial ratings of about .50 when a sample
of 16 rejects appeared as the first sample. Thus, for these subjects '\n'm
assume that such samples were judged to be neutral. When such samples followed
diagnostic ssmples, however, all of the control subjects and all but 5 of the
trained subjects adjusted their inicial ratings toward neutral, vhich is
normatively inappropriate given that the sample is judged to support neither
hypothesis. For the control subjects, such errors are not surprising (c.f.
Shanteau, 1975; Troutman & Shanteau, 1977)., But the question is why so many
trained subjects, if they reslly understood the task better than control
subjects, also made the inappropriate sdjustment. The answer may lie in how
these subjects interpreted the label "neutral."” 1ldeally, a subject who
spplies the label "neutral” to the second of two samples will interpret this
as providing sero support for either hypothesis and hence will make no adjustment
of the initial response. But if subjects do not recognisze that "neutral" means
"sero support,” they may interpret the semple as evidence for anothar hypothesis,
namely, that the machine is neither clearly normal nor clearly broken, and
adjust toward the scals position (i.e., the aidpoint) that best seems to signify
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this third hypothesis.

In Experiment 2 the extent of debissing was even more remarkable, particu-
larly vhen one recalls the many previous unsuccessful efforts that have been
directed at reducing conservatism in the Bayesian task. In evaluating this
result, it is important to understand that there was nothing inm the instructions
that would have prevented subjects from continuing to weight information
oqually regardless of diagnosticity. That is, the subjects were only instructed
to begin their judgment using the "stronger" sample; they were not instructed
to give it more weight in the final judgment. Nevertheless, the net effect of
the mmmipulation was for judgments to closely approximate optimal values.
Whether this occurred because subjects intended to give the mors important
stimulus more weight is, of course, not clear. One might argue that the
improved ic:l.ghc:ln; pattem occurred due to unintentional primacy effects that
were outside of the subjects' comprehension of the task. But it is worth

noting that in natural judgment situatioms, people often "put first things first,”

considering those items that sre desmed to be importamt before they comsider
other, less important items. Thus, ore strategy for differential weighting may
be exactly to attend to items in order of importance and to make smaller and
smaller adjustamts for items that are of lesser and lesser importance.

What Do Judges Do? ,

Yor more then 20 yesrs, evidence has been accumulating that human judgments
often sesm to follow algebraic rules (cf. Andersom, 1974). The "averaging rule"
for infermnce judgments is merely one case in point. But algebraic models of
Judgaet have had limited appeal for some judgment researchers becsuse they have
only "as if" status: The data look as if they have been produced by application

of an algebraic rule, but there is no theoretical necessity that the psychological

processes of the judge in any vay resamble “psper and pencil" algebraic manipula-
tion.

The "debiasing" ressarch reported heire was based on a procedural theory of
how people generate data that have algebraic patterms. The spproach was based
on the assumption that if a person's judgments in inference tasks look more like
sverages than like inferences, then at some point during the judgment process
the person must be performing one or more operations that are nearer to those
required for averaging than they are to those required for infereacing.
Debiasing, then, sust involve discovering those inappropriate judgment operations
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ad replacing them by operations that are better suited to inference.

Figure 7 outlines the major steps that are hypothesized to occur during
judgment. In the first step, scanning, the judge merely assesses what informa-
tion has been presented for judgment. Obviously, the details of the scanmning
step will depend on the task itself. In tasks such as that used in Experiment 1
vhere stimulus information is presented sequentially, scanning will be rudi-
sentary since there is only one stimulus to scan. In simultaneous tasks, however,
scanning will be more clearly distinguishable from other judgment operations.

In some tasks (such as that used in Experiment 2) where the number of stimulus
items is small and vhere there is no a priori reason to suppose that any particular
item will be more important tham iny other item, scanning will include all
available items, with order of scanning determined by stimulus formatting factors.
In other cases, however, such as judging applications for graduate admission,

some items may be consistently scanmned before other items (i.e., GPA, GRE scores,
etc.), and some items uy be not scanned at all, at least not on the initial

pass over an application (i.e., applicant's hobbies, past employment, etc.).

It is assumed that the scanning operation is primarily aimed at orienting
the judge to the available information. Although the judge may develop a rough
impression of the stimulus from scamning it, this impression ﬁul not in general
be the final response. There may, of course, be exceptions to this rule.

For example, if in scanning a grjduatc application, the judge notices that the
candidate is clearly below standard on some critical factor, that application
may be immediately rejected. Nevertheless, many experimental tasks implicitly
or explicitly rule out such snap judgments by cautioning the judge against
making overly hasty "end-responses.”

Once the judge has scanned the available information, he or she is hypo-
thesized to select an item to use as an "anchor point" (cf. Einhorn & Hogarth,
1982; Lopes & Johnson, 1982; Lopes & Oden, 1981; Tversky & Kahneman, 1974).

If only one item has been presented, of course, that item must be the anchor.
But if more than one item is available the "anchor stimulus" will generally be
chosen because it seems relatively more important than the others. Such
importance may reflect the a priori importance ¢f the category to which the
iten belongs as, for example, GPA for graduate admissions, But it may also
reflect diagnosticity within category as, for example, when items are selected
by virtue of their being very extreme. Only if the various items seem equally
important will the subject resort to ad hoc choice schemes such as, for example,
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taking the items in order as they appear in the stimulus array.

Once an anchor has been chosen, it must be evalusted relative to the
scale of juigment. This "valuation" operation may in some cases yield a quantity
that serves directly as the initial judgment., For example, previous research
on the inference task used in the present experiments suggests that subjects may
simply anchor their judg-'nnt at a scsle position that is proportional to the
number of rejects in the first sample (Lopes, 1981). In other cases, however,
the initial judgment may be somewhat less extreme than the scale value associated
with the anchor stimulus. In these situations subjects act as though their
-initial judgment is a compromise between the value of the stimulus information
and some intemal, ncutui "initial impression” (Anderson, 1967).

Once anchoring has been accomplished the subject must decide whether there
are still important items left to be judged. If so, the process essentially
reiterates, with the subject choosing which of the remaining items to consider
aext. As can bde seen in the figure, the considerations at this point are
exactly wvhat they were at the time of choosing the anchor: If one of the remaining
items is clearly more important than the others, the subject chooses it, other-
wise an item is chosen arbitrarily, and the scale value of the chosen item is then
deterained,

The next step in the process is "adjustment” of the initial value in light
of the new information. It is this step.that is seen as being most crucial in
determnining the algebraic form of the overall judgment. In the case of "averaging"
rules, the adjustment operation is assumed to involve two stages: (1) location
of the new information on the scale of judgment relative to the initial judgment,
and (2) adjustment of the initisl judgment toward the new information. This
produces a new judgment that lies between the first two values and is, in that ‘
sense, sn gverage of the two. Other algebraic rules can also result from the adjust-
ment stage, but the particulars of their respective adjustment processes differ |
in important ways. For example, multiplying can be seen as a form of serial
fractionation (Lopes, 1976; Lopes & Ekberg, 1980) in which adjustments to the
initial value are alwvays downward (toward a zero-point on the response scale)
and directly in proportion to the subjective value of the stimulus being adjusted
for. In the same way, ratio responses, such as those produced by trained subjects
in Experiment 2, can be seen as involving adjustments that reflect the degree to
vhich new information supports or disconfirms the qualitative impact of previous
information.
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After each adjustment step, the judge is assumed to consider whether there
are still important items left unaccounted for. If there are, the process is
repeated with each new item of information leading to adjustment of the previous
judgment, and with the adjustments ordinarily becoming smaller as the perceived
importance of the new information becomes smaller in relation to previously
considered information. At some point, however, either when the stimulus informa-
tion runs out or when the subject judges that nothing important remains to be
considered, the final response is made on whatever scale has been provided.

Changing What Judges Do

In order to debias human judgments, it is necessary to change the judgment
process. But how? As Fischhoff (1982) pointed out, that depends on one's
theory of why the judgments are biased. The earlieat attempts at debiasing
Bayesian inference were based generally on global notions of why the bias

- occurred: i.e., subjects were poorly motivated, or misunderstood the instructiomns,
- or refused to use the response scale properly. These causal models had in common
that they implicitly assumed ttat the bias could be "fixed” without the necessity
s of knowing how the subject actually generated the biased judgment.

,' The present approach differs from these early methods in that it rests on

an analysis of what the subject does when he or she erroneously produces an

f: . average rather than an inference. In this view, the judgment process is seen as
F comprising a set of procedures for scanning, selecting, analyzing and, finally,

':::4 integrating stimulus information. The procedures are quantitative, but not

:“ numerical; computational but not arithmetical. The procedures function in such

;F‘;Z a way that judgments can be described fairly as the result of an averaging

aa process, but the "algebra" is implicit in the subject's actions rather than

» explicit in conscious awareness.

In debiasing the present task, the first step was to understand exactly
what subjects did in producing their biased judgments. Then it remained only
to identify the faulty procedures and to replace these by similar--but normatively
more appropriate—procedures. What is surprising is that for once the debiasing
vas even easier to do than to imagine, duve in part to the fact that the training
not only replaced "bad" procedures but, apparently, helped subjects to better
understand the task.

Only one other debiasing method, that of Eils, Seaver, and Edwards (1977),
has been as successful as the present method in improving the performance of
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naive subjects in the Bayesian task. On the face of it, there are profound
_ differences between these two successful approaches, not the least of which s
3‘ that Eils et al. engineer the task to fit the subjects whereas the present
E ) approach engineers the subjects (or at least their judgment procedures) to fit
':: the task. In g deeper sense, however, the two approaches have much in common
N because they are both based on an understanding of procedures that sutjects
f‘: ’ use vhen they generate biased responses.
3 Eilg et al. base their approach on the empirical observation that subjects,
by vhatever means, produce data that are more like averages than like inferences.
: They cleverly turn this "error" to their sdvantage by recasting the task so that
’ subjects are aked to do what they do naturally and well, namely, averaging.
It then requires only a simple mechanical transformation to convert the subjects’
"gverage likelihood ratios” into "cumulative likelihood ratios.”
) ‘The present approach is also based on an understanding of the averaging
s process, but the focus is shifted from the algebraic form of the data to the
, microstructure of the process that generates the data. The tacit assumption is
:,‘ that although subjects have access to components of the judgment process (and
R hence that they can control the sequence in which components are executed and the
: content on which they operate), they do not have assess to the algebraic implica-
4 tions of what their procedures do. Thus, there is little point in enjoining
j subjects to be less conservative, or to report their "true" probabilities, or to
; multiply rather than average.
3 Serious nginuring in any domain rests on knowledge of the medium to be
engineered. In the case of judgmental engineering, one mugt understand the
J judge as well as the judgment. People do some things well, other things badly;
® , they have access to some processes and not to others. Building better judges
ﬁ ¢ requires that we know what people do and how they do it. After that, debiasing
by is easy.
)
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Footnotes
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TABLE 1
NUMBER OF ADJUSTMENT ERRORS
EXPERIMENT 1
PAIRS CONTROL TRAINED MAXIMUM POSSIBLE
Weak-strong 0.40 0.42 24
Strong-weak 13.40 3.11 24
Diagonal 3.24 1.08 16

Note. Errors were scored for weak-strong cells and bttong-weak cells only 1if
. there was actual adjustment and it was in the wrong direction. Errors were
acored for diagonal cells only if there was room for adjustment and if there

was adjustment in the wrong direction or no adjustment.
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